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The vaporization of a droplet in rectilinear motion relative to a stagnant gaseous
atmosphere is addressed for the limit of low Reynolds numbers and slow variation of
the droplet velocity. Approximations are introduced that enable a formal asymptotic
analysis to be performed with a minimum of complexity. It is shown that, under the
conditions addressed, there is an inner region in the vicinity of the droplet within
which the flow is nearly quasi-steady except during short periods of time when
the acceleration changes abruptly, and there is a fully time-dependent outer region in
which departures of velocities and temperatures from those of the ambient medium are
small. Matched asymptotic expansions, followed by a Green’s function analysis of the
outer region enable expressions to be obtained for the velocity and temperature fields
and for the droplet drag and vaporization rate. The results are applied to problems
in which the droplet experiences constant acceleration, constant deceleration and
oscillatory motion. The results, which identify dependences on the Prandtl number and
the transfer number, are intended to be compared with experimental measurements
on droplet behaviours in time-varying flows.

1. Introduction
Because of interest in understanding spray-combustion characteristics in rocket and

gas-turbine combustors, internal combustion engines and oil-fired furnaces, studies
of the combustion of fuel droplets have remained active research topics for over
fifty years. Godsave (1953) and Spalding (1953) were the first to offer simplified
models for the spherically symmetrical combustion of a liquid fuel droplet in a
gaseous oxidizing atmosphere, envisioning the combustion to be diffusion-controlled
and thereby deriving the well-known d-square law, according to which the square
of the droplet diameter decreases linearly with time. Numerous reviews of this work
and somewhat later developments have been written, among them Williams (1965),
Williams (1973), Faeth (1977) and Law (1982). Most investigations pertain to quasi-
steady conditions, an approximation justifed for stationary droplets by the typically
large ratio of liquid to gas density at normal atmospheric conditions, and some authors
(Fendell, Sprankle & Dodson 1966; Fendell 1968; Gogos et al. 1986; Wichman &
Baum 1993; Jog, Ayyaswamy & Cohen 1996; Ackerman & Williams 2005) address
non-spherical quasi-steady convection in droplet combustion for small Reynolds
numbers under these conditions. For large ratios of liquid to gas densities there have
been relatively few studies of the possible time-dependent effects, although Crespo &
Liñán (1975) and Waldman (1975) analysed the time-dependent behaviour for



220 G. del Álamo and F. A. Williams

spherical symmetry. More recent reviews are available (see for example Sirignano
1983, 1999; Williams 1985; Dwyer 1989; Chiu 2000). The ultimate interest of the
present study is to consider effects of non-spherical time-dependent convection on the
combustion of droplets having a large ratio of liquid to gas density, since in many
applications the velocity of the droplet relative to the gas varies with time under such
conditions.

To approach this problem, attention here is focused on vaporization of a droplet in
slowly varying flows at low Reynolds numbers. Conditions are addressed in which the
gas density can be approximated as being constant, that is, large temperature changes
are excluded. Although this approximation is unrealistic in droplet-combustion
applications, a thorough understanding of the constant-density problem is required
before variable-density effects can be addressed properly, and through judicious
selection of values of properties, it has in fact been possible to relate results of
constant-density analysis to results of droplet-combustion experiments in the presence
of slow forced convection (Ackerman & Williams 2005). To enable asymptotic analysis
to be pursued as clearly and simply as possible, a number of other simplifying assump-
tions will be involved, greatly reducing the number of parameters that otherwise
would appear, so that many different spray-combustion and droplet-combustion
effects, discussed in the previously cited literature and of importance under various
circumstances, are not addressed.

Given the approximations of a constant gas density and a large ratio of liquid to
gas density, significant literature that does not address combustion underlies the
present investigation (Fuchs 1959). The latter approximation enables the time variation
of the droplet diameter to be neglected, as is done here. The problem then reduces
to that of determining the velocity and temperature fields for flow around a sphere
of fixed diameter. That flow, in general, induces flow of the liquid inside the droplet
(Levich 1962; Sadhal & Ayyaswamy 1983), but in the present work, to minimize the
number of parameters that appear in the problem so as to simplify the results and
facilitate understanding, it is assumed that the liquid viscosity is sufficiently large
for liquid motion to be neglected (often a reasonable approximation). Therefore only
rigid spherical droplets are addressed. Moreover, for similar reasons, temperature
variations within the liquid are neglected, so that only gas-phase conservation
equations need be addressed. Boundary conditions at the droplet surface lead to
specification of the temperature there as the vaporization temperature, determination
of the proportionality between the heat flux to the droplet surface and the vaporization
rate through the transfer number (denoted by B and defined below), and imposition
of the no-slip condition for the velocity field there.

The droplet vaporization results in radially outward flow at the droplet surface,
which then interacts with the externally imposed non-spherical convection through
the equations of mass and momentum conservation. Consideration of this interaction
distinguishes the present investigation from many previous investigations in which
flow through the surface of the sphere is neglected. In that limit of a neglegible mass
source, in the first approximation for low Reynolds numbers in steady flow, the Stokes
drag law applies (Stokes 1851), the uniformly valid leading-order flow field having
been first obtained by Oseen (1910), as explained by Proudman & Pearson (1957).
Heat and mass transfer in this same mass-source-free type of steady flow, leading to
determination of Nusselt numbers, were addressed somewhat later (Acrivos & Taylor
1962; Brenner 1963; Batchelor 1979), and the effect of the mass source on the flow
was considered subsequently (Sadhal & Ayyaswamy 1983; Chung, Ayyaswamy &
Sadhal 1984). With coupling between the heat-transfer rate and the strength of the
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mass source, bringing in the equation for energy conservation, the Prandtl number σ

becomes an additional parameter in the problem addressed here. A number of results
will be summarized for steady flow, in forms simpler than those that can be found in
the literature.

Time-varying motions of droplets can introduce numerous complications that
depend strongly on the type of motion (Clift, Grace & Weber 1978). For this reason,
if analytical progress is to be made, it is necessary to restrict attention to particular
classes of motion. With this in mind, only straight-line rectilinear motion is considered
here, as a first step that must be undertaken before it is reasonable to address other
more complex motions. Moreover, to enable expansions to be developed, attention is
restricted to slowly varying conditions, for which the flow in the vicinity of the droplet
is quasi-steady in the first approximation. The unsteady force on solid spheres in flows
of this type has been considered previously (Ockendon 1968; Sano 1981; Hinch 1993;
Asmolov 2001), and heat transfer to spheres in such flows has been analysed without
considering mass-source effects (Choudhury & Drake 1971; Abramzon & Elata 1984;
Feng & Michaelides 1996; Pozrikidis 1997). These various studies have addressed
acceleration, deceleration and oscillatory motion, but not coupling of the momentum
and energy fields, which is the subject of the present work. The Greens-function
methods of previous studies (Pozrikidis 1997), however, are essential in the present
analysis, which addresses diffusion-controlled droplet evaporation in the limit of
low-velocity flow varying slowly in time.

2. Statement of the problem
A theoretical analysis employing matched asymptotic expansions is presented. For a

droplet of diameter d , in a flow with a characteristic external velocity ue measured with
respect to the droplet, a characteristic Reynolds number based on droplet radius is

ε =
due

2ν
, (2.1)

where ν denotes the kinematic viscosity. Since attention is focused on small Reynolds
numbers, ε will be a small parameter of expansion. For small ε there are two
distinguished regions in the flow, an inner Stokes region where the radius is of order
d and an outer Oseen region where the radius is of order d/ε. A characteristic
diffusion time in the Oseen region is therefore to = d2/4νε2, and the ratio of this to
a characteristic time te of variation of the external velocity is

c = to/te =
d2

4νε2te
. (2.2)

The analysis to be developed treats c of order unity and ε as a small parameter.
The ratio of a characteristic diffusive time in the Stokes region, ts = d2/4ν, to the

characteristic time te is cε2 according to (2.2), which is very small for small ε and c of
order unity. This favours applicability of quasi-steady solutions in the Stokes region
to leading order. Although the formulation will allow for general time variations of
the external velocity under these restrictions, specific problems resulting in somewhat
special expansions will be addressed. One is the acceleration of the droplet from
rest in a stagnant atmosphere at a constant acceleration a. In this case, there is no
imposed characteristic velocity ue, and since the Oseen region is expected to control
the characteristic evolution time for c of order unity, the value of c in (2.2) may be set
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equal to unity, resulting, with the definition te = ue/a and with (2.1), in the expression

ε =
da1/3

2ν2/3
(2.3)

for the small parameter of expansion; this corresponds to ue = (aν)1/3, making the
convection and diffusion terms in the Oseen region of the same order of magnitude.
Another problem concerns the deceleration of a droplet initially vaporizing quasi-
steadily in a flow of constant external velocity ue, with a constant deceleration rate
a imposed after time zero. In this case, (2.1) defines the relevant Reynolds number
ε, and (2.2) again applies for c with te = ue/a. In a general situation, the maximum
imposed external velocity would be used to define the small parameter ε, and the
maximum absolute value of the acceleration would be used to define the parameter c.

The last problem to be addressed in this work corresponds to the evaporation of
a droplet in sinusoidal oscillatory motion about a mean velocity ue, with constant
frequency � and amplitude of the oscillations u′

e. In this case, (2.1) and (2.2) are used
to define ε and c, with te = � −1 being the appropriate characteristic time of variation
of the external velocity. For purely oscillatory motion with zero mean velocity, the
amplitude of the oscillation is taken to be the characteristic external velocity, and
therefore ε = du′

e/(2ν) becomes the corresponding Reynolds number.

3. Formulation
The problem is formulated initially with non-dimensional variables appropriate for

the Stokes region. The droplet radius d/2 and the diffusion time in the Stokes region
d2/4ν are chosen as scales for length and time, and the viscous velocity 2ν/d is selected
as the scale for velocity. For simplicity, the density, specific heat, thermal conductivity
and coefficient of viscosity are assumed constant, and the conservation equations are
written in a coordinate system attached to the droplet. This is an inertial system when
the droplet is stationary and the fluid is moving or if the droplet is moving at constant
velocity in an ambient fluid at rest, but it is a non-inertial system if the droplet moves at
variable velocity. Because of the constant-density approximation, both situations can
be described by the same formulation if an additional acceleration term is included
in the body force, making an additional contribution to the hydrostatic pressure
gradient when the droplet is in variable motion. With p′ denoting the resulting non-
dimensional ratio of pressure to density (non-dimensionalized by the square of the
viscous velocity), τ ′ denoting the corresponding non-dimensional viscous stress tensor
and g′ the non-dimensional acceleration by body forces, the mass, momentum and
energy conservation equations become

∇ · (v) = 0, (3.1)

∂v

∂t
+ v · ∇v = −∇p′ + g′ + ∇ · τ ′ (3.2)

and

∂θ

∂t
+ v · ∇θ =

∇2θ

σ
. (3.3)

Here σ is the Prandtl number, v denotes the non-dimensional velocity vector, and the
non-dimensional temperature is

θ = (T − Ts)/(T∞ − Ts), (3.4)
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where T denotes temperature, the subsript s identifies conditions at the surface of the
droplet, and the subscript ∞ denotes conditions in the ambient gas.

In the far field, the boundary conditions at infinity are

θ = 1, v = εU ex, (3.5)

where U represents the ratio of the instantaneous external velocity (with respect to the
droplet) to ue, so that εU is the instantaneous Reynolds number, and the x-direction
has been taken to be the direction of the external velocity (assumed not to change
with time), ex denoting a unit vector in the x-direction. The non-dimensional radial
coordinate will be denoted by r , and at the droplet surface (r = 1), the tangential
component of velocity must vanish because of the no-slip condition, the liquid being
assumed sufficiently viscous to prevent internal fluid motion. The heat of vaporization
per unit mass for the liquid Lv is assumed to be large compared to the product of the
gas constant per unit mass for the vapour and the boiling temperature, whence from
the Clausius–Claperyon relation, the temperature at the droplet surface Ts becomes
approximately constant and equal to the boiling temperature. The other boundary
conditions at the droplet surface become

θ = 0,
∂θ

∂r
=

σ

B
vr, vr = b, (3.6)

where the transfer number, to be taken as of order unity, is B = cp(T∞ − Ts)/Lv , cp

denoting the specific heat at constant pressure, vr is the radial component of the
non-dimensional velocity, and the non-dimensional radial velocity b in the gas at the
droplet surface depends in general on both time and the polar angle cos−1 µ measured
from the direction of the external gas velocity (the x-axis). By symmetry, the velocity
and temperature fields are axisymmetric, independent of the azimuthal coordinate in
a spherical polar coordinate system.

It is convenient to introduce a non-dimensional streamfunction ψ , replacing the
momentum conservation equation by a vorticity conservation equation, and to write
the resulting conservation equations explicitly in terms of t , the non-dimensional
radial coordinate r and the independent variable µ, the cosine of the polar angle.
Equations (3.1), (3.2) and (3.3) then reduce to

D4ψ + L(ψ, D2ψ) =
∂

∂t
D2ψ (3.7)

and

∇2θ + C(ψ, θ) = σ
∂θ

∂t
, (3.8)

where

D2 =
∂2

∂r2
+

1 − µ2

r2

∂2

∂µ2
, (3.9)

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2

∂

∂µ

(
(1 − µ2)

∂

∂µ

)
, (3.10)

L(ψ, D2ψ) =
1

r2

[
∂ψ

∂µ

∂

∂r
D2ψ − ∂ψ

∂r

∂

∂µ
D2ψ − 2

∂ψ

∂r

µ

1 − µ2
D2ψ − 2

r

∂ψ

∂µ
D2ψ

]
(3.11)

and

C(ψ, θ) =
σ

r2

(
∂ψ

∂µ

∂θ

∂r
− ∂ψ

∂r

∂θ

∂µ

)
. (3.12)
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Equations (3.7) and (3.8) are to be solved subject to the boundary conditions

∂ψ

∂r
= 0,

∂ψ

∂µ
= −b, θ = 0,

∂θ

∂r
=

σb

B
(3.13)

at r = 1 and

ψ = 1
2
εUr2(1 − µ2), θ = 1 (3.14)

at r = ∞, and initial conditions ψi(r, µ) and θi(r, µ). It is assumed that prior to
the onset of variation of the external velocity, the droplet is evaporating steadily
and possibly moving steadily. Uniformly valid matched asymptotic expansions of the
solutions ψ and θ based on the small parameter ε will be sought. The non-dimensional
vaporization velocity b at the droplet surface is to be determined in the course of

the solution, the non-dimensional total vaporization rate, M =2π
∫ 1

−1
b dµ, being of

particular interest.

4. The inner problem and the quasi-steady inner solution
In the Stokes region, the solutions for ψ , θ and b can be written for small ε in

terms of the expansions

ψ = ψ0 + εψ ′, θ = θ0 + εθ ′, b = b0 + εb′, (4.1)

where the leading-order terms

ψ0 = −µb0, θ0 =
1

B

{
(1 + B)1−1/r − 1

}
, b0 =

ln(1 + B)

σ
(4.2)

correspond to steady vaporization of a droplet at rest in a stagnant atmosphere. The
first perturbations ψ ′ and θ ′ are then found from (3.7) and (3.8) to obey

D4ψ ′ + εL(ψ ′, D2ψ ′) − b0

r2

(
∂

∂r
− 2

r

)
D2ψ ′ =

∂

∂t
D2ψ ′, (4.3)

and

∇2θ ′ + εC(ψ ′, θ ′) − σb0

r2

∂θ ′

∂r
+

σb0(1 + B)1−1/r

Br4

∂ψ ′

∂µ
= σ

∂θ ′

∂t
, (4.4)

with boundary conditions

∂ψ ′

∂r
= 0,

∂ψ ′

∂µ
= −b′, θ ′ = 0,

∂θ ′

∂r
=

σb′

B
(4.5)

at r = 1, obtained from (3.13), and matching conditions with the outer solution at
r → ∞.

By introducing Gegenbauer polynomials for the angular dependence of ψ ′ and
Legendre polynomials for the angular dependences of θ ′ and b′, the solutions to
(4.3)–(4.5) can be written as

ψ ′ = U
{

−µλ + 1
2
(1 − µ2)f

}
, θ ′ = σU{g − µh}, b′ = U{λ − µχ}, (4.6)

where the functions f (r, t), g(r, t) and h(r, t) as well as λ(t) and χ(t) remain to be obtai-
ned. For large t , a quasi-steady solution to (3.7)–(3.8) applies in the first approxima-
tion for small ε. The resulting quasi-steady problem has been treated extensively
in the literature (Fendell 1968; Sadhal & Ayyaswamy 1983; Chung, Ayyaswamy &
Sadhal 1984), and it can be shown that, neglecting terms of higher order in ε,

λ = g∞B/(1 + B) (4.7)
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Figure 1. Variations of the constants A1 and A2 given by (4.9) and (4.10) and of the ratio
A2/A1 with the unperturbed non-dimensional vaporization rate b0.

and

χ =
1 − K1 − (1 − 3A2/A1)K3 − 3K4/A1

K2 + (1 − A2/A1)K3 + K4/A1

, (4.8)

where

A1 = b2
0/2 − 1 + (1 + b0) e−b0 (4.9)

and

A2 = b2
0/6 − 1/5 −

[(
b4

0 − b3
0 + 2b2

0 − 6b0 − 6
)/

30
]
e−b0, (4.10)

which are plotted in figure 1, and K1, K2, K3 and K4 are given in Appendix A, while

f = r2 +
2

r
− 3 + χ

r

{
1 +

b5
0

A1

[∫ r/b0

1/b0

(ξ 3 + ξ 4) e−1/ξ dξ +
r3 − 1

6b3
0

− r5 − 1

5b5
0

]}
, (4.11)

g = g∞(1 − 1/r)(1 + B)−1/r (4.12)

and

h = [C e−σb0 +V2(r)]

(
1− 2r

σb0

)
−

[
C

(
2 − σb0

2 + σb0

)
+V1(r)

](
1+

2r

σb0

)
e−σb0/r , (4.13)

where the functions V1(r) and V2(r) are defined as

V1 =
1 + B

B

∫ r

1

(
1 − 2r

σb0

)
f (r)

r2
dr (4.14)

and

V2 =
1 + B

B

∫ r

1

(
1 +

2r

σb0

)
f (r)

r2
e−σb0/r dr, (4.15)

and

C =
(1 + B)(2 + σb0)

B(σb0)2K2

{1 − K1 + 2K3 − (3 + χ)[K3(1 − A2/A1) + K4/A1]}. (4.16)

Expansions of χ , f , g and h for small and large values of b0 are given in Appendix B.
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These results are stated here, without derivation, in what appears to be an optimally
compact form which cannot be found in the literature. It may be noted from
these results that, even for the time-dependent problem, the functions f and h

are independent of t , and χ is a constant. These functions and the constant χ are
determined uniquely by just two parameters, the thermodynamic variable B and the
transport property σ , the non-dimensional leading-order vaporization rate b0 being
related to these by (4.2). The angular dependences of the temperature field and
vaporization rate are carried by the time-independent function h and eigenvalue χ ,
and these dependences average to zero when integrated over all angles. The time
dependences of the vaporization rate and the temperature field appear only in U ,
λ and g and, given U , are determined by the single function g∞(t), which must be
obtained by matching. Except for the given function U (t) and the simple dependence
arising through λ(t), the velocity field depends only on the function f , which is seen
from (4.11) to be independent of t , like h and χ , and determined uniquely by b0 and
σ . The normalized non-dimensional vorticity in the inner region can be expressed

as ω = −ε
√

1 − µ2Ω/r , with Ω = d2f/dr2 − 2f/r2. Introducing the expression for f

given by (4.11) into this formula for Ω gives

Ω =
2(3 + χ)r2

A1

{
e−b0/r

(
1 +

b0

r
+

b2
0

2r2

)
− 1

}
, (4.17)

the functional form of which depends only on b0, the Prandtl number σ appearing
only in the prefactor. The only unknown to be determined by matching to the outer
region then, up to terms of order ε2, is g∞, which affects the temperature field and
the vaporization rate.

5. Properties of the quasi-steady inner solution
5.1. Velocity field and mass source

From (4.1), (4.6) and (4.7), the non-dimensional vaporization velocity can be written,
up to terms of order ε2, as

b = b0 + εU{g∞B/(1 + B) − µχ}, (5.1)

in which U and g∞ determine the time dependence and χ the angular dependence.
Values of χ obtained from (4.8) are plotted in figure 2 as a function of b0 for three
values of σ . It can be seen that there is a monotonic increase of χ with b0, which
goes from zero at b0 = 0 to

χ∞ = 15σ 3

{
σ 5 ln

(
1 + σ

σ

)
+ (10σ 2 + 15σ + 6) ln(1 + σ )

− σ 4 +
σ 3

2
− 12σ 2 − 6σ

}−1

− 3, (5.2)

at b0 = ∞. The dependence of χ∞ on the Prandtl number σ is shown in figure 3, which
exhibits an increase of χ∞ with σ from 3σ/2 at small σ to 3σ/(2 ln σ ) at large σ . Thus,
in addition to increasing in proportion to the external relative velocity (through U )
and to the apparent external temperature increase (through g∞), the vaporization rate
becomes larger in the upstream direction and smaller in the downstream direction,
by an amount which increases with increasing unperturbed vaporization velocity and
with increasing Prandtl number, lower thermal conductivities enhancing the angular
dependence.
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Figure 2. Variations of χ , the non-dimensional coefficient of the angular dependence of the
vaporization rate, with the unperturbed non-dimensional vaporization rate b0 evaluated from
(4.8) for different values of the Prandtl number (σ = 0.5, 1 and 2).
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Figure 3. Dependence of χ∞ on σ obtained from (5.2), showing how, in the limit of large
vaporization rates, the strength of the angular dependence of the vaporization rate increases
with the Prandtl number.

The non-dimensional total vaporization rate M = 2π
∫ 1

−1
b dµ can be calculated

from the solution for b in (5.1) to give

M = 4π{[ln(1 + B)]/σ + εUg∞B/(1 + B)}. (5.3)

From (3.1), it can be shown that M is the total rate of mass transfer through any
spherical surface in the inner zone surronding the droplet (and centred at the droplet
centre) divided by the product of the viscosity coefficient and the droplet radius.
Applying this result to large values of r demonstrates that sufficiently far from its
surface the droplet behaves like a point source of mass, the strength of which increases
with increasing B , U , g∞ and thermal conductivity (through σ ).
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Figure 4. The rotational component of the velocity field in the inner region. (a–c) Variations
with r of the component f of the non-dimensional perturbation streamfunction ψ ′ of (4.6),
as given by (4.11), for various values of b0 (solid lines: b0 = 0.5, 1, 2, 10 and 50; dashed
lines: b0 = 0; dashed-dotted lines: b0 = ∞) and for different values of Prandtl number ((a)
σ = 1; (b) σ = 0.1; (c) σ = 10). (d) —, The radial and - - -, tangential components of the non-
dimensional velocity, normalized by the product εU , in the strong-vaporization limit. b0 � 1.

The velocity field, determined by the streamfunction, is purely radial and irrotational
at leading order in the inner zone, and there is an additional irrotational radial
contribution, through λ in (4.6), in the perturbation. In addition to that, the perturba-
tion introduces a non-radial angular-dependent rotational contribution through f .
The dependence of this component of the non-dimensional streamfunction on r

for various values of b0 is shown in figure 4, for three different values of σ . The
corresponding radial and tangential components of the non-dimensional velocity,

normalized by the product εU , are µf/r2 and −
√

1 − µ2(df/dr)/(2r), respectively,
and they are plotted for the limit of large b0 in figure 4(d). The rotational part of the
velocity field generates an angular-dependent component in the distribution of the
non-dimensional pressure p′ of (3.2), which, normalized by the product εU , can be
written as µp with

p = f ′′′/(2r) − [b0 + 1/(2r2)]f ′′ + f ′[1/(2r3) − 1/r2] + 2f/r3, (5.4)

the prime here denoting differentiation with respect to r .
Figure 4 shows that at the droplet surface, the function f is negative with zero

slope, except in the limit b0 = 0, in which case the value is zero. In this limit, from
the expansion given in Appendix B it is seen that f = r2 − 3r/2 + 1/(2r), which is
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the non-dimensional streamfunction for a non-vaporizing sphere in steady flow for
all values of σ , plotted as dashed curves in figure 4(a–c). The curves in figure 4 for
small b0 have positive curvature for all r , so f becomes positive near the droplet
surface, at a radial distance that increases with increasing vaporization velocity. The
curves for large b0, however, have a negative curvature near the droplet surface, and
f becomes positive only far from the surface. From the expansions for large b0 given
in Appendix B, it can be seen that near the droplet surface, where r is of order
unity, the non-dimensional streamfunction approaches the negative-valued function
f = −(χ∞/3)(r2 + 2/r), for which the velocity field is irrotational; this is shown as
the dot-dash curves in figure 4(a–c). Essentially, at large b0, the vorticity region is
blown away from the droplet surface, and a mixing region develops at large r , the
flow being reversed on the droplet side, as will now be described more fully.

As shown in Appendix B, to investigate the blown-off mixing region it is appropriate
to rescale r with b0 and f with b2

0. Figure 4(d) shows the resulting normalized
non-dimensional radial and tangential velocity components from f in this rescaled
mixing region. These perturbations become equal, implying a purely axial component
of the velocity field, not only outside the mixing region but also on the droplet
side of it. Moreover, on the droplet side the tangential velocity component points
upstream, except when σ =0, in which case it is zero. This reverse flow is generated
by the interactions of the angular-dependent source flow with the externally imposed
uniform flow. Expanding (5.4) for large b0 gives p/b0 = f ′′ at leading order in b−1

0 ,
indicating that the angular-dependent component of the pressure is given mainly
by the momemtum flux in the tangential direction. Since the angular-dependent
tangential velocity component points upstream, which it must do to satisfy continuity
as a consequence of the relative increase of the vaporization rate on the upstream

side of the droplet, the pressure gradient in the tangential direction,
√

1 − µ2p/r ,
becomes negative, reversing the flow in this perturbation contribution. The pressure
gradient, and consequently the strength of the reverse flow, increases with σ , smaller
thermal conductivities favouring larger perturbations through the interactions. In
figure 4(d) it is seen that, except at the edges of the mixing region, the tangential
velocity component always lies above the radial velocity perturbations, that is, the
shear is largely in the tangential direction.

To illustrate more clearly the structure of the inner solution in the large-b0 limit, the
perturbation streamlines and isotherms calculated from the large-b0 inner solution of
figure 4(d), for a droplet evaporating steadily in a constant-velocity flow are plotted
in figure 5. The expressions for ψ ′ and θ used to obtained the curves in figure 5 are
given by (4.1), (4.2) and (4.6)–(4.16) with g∞ = σ (1+B)/(2B), the value obtained from
matching to the outer solution for steady flow. It can be seen in figure 5 that, for large
b0, the effect of higher Prandtl numbers is to increase the strength of the reverse flow
and decrease the temperature of the inner region, the reverse-flow tendency being
especially evident from the separation region downstream from the droplet, seen in
figure 5(b). The separation region, with reverse flow present everywhere around the
droplet, is, of course, present only in the perturbation, as may be seen, for example,
from the streamlines for the full solution, obtained from (4.1), (4.2) and (4.6), plotted
in figure 6 for εU = 0.1, with the other parameters corresponding to figure 5(b).

The different behaviour of the velocity field for strong vaporization, as compared
with the behaviour for weak or moderate vaporization, may also be viewed in terms
of the vorticity in the inner region. Figure 7 shows (for σ = 1) the r dependence of
the vorticity factor Ω given by (4.17), for the values of b0 that were selected for
figure 4(a). For b0 = 0, 0.5 and 1, at the droplet surface, the vorticity has a maximum
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Figure 5. The streamlines for the perturbation of the stream function (ψ ′/U=−λ, corres-
ponding to the horizontal axis µ= 1, −4λ/5, −3λ/5, −2λ/5, −λ/5, 0, 4λ/5, 3λ/5, 2λ/5, λ/5 and
λ, the separatrix, the bold curve, corresponding to the stagnating streamline) and the isotherms
((a) θ = 0, 0.05, 0.1, 0.15, 0.2, 0.25 and 0.30; (b) θ = 0, 0.03, 0.06, 0.09, 0.12 and 0.15),
calculated from the large-b0 (strong-blowing) inner solution for a droplet evaporating steadily
in a constant-velocity flow, plotted as solid curves and dashed curves, respectively, for b0 = 10,
with (a) σ = 1 and (b) σ = 5.

value which decreases as the vaporization velocity increases. With further increase
of b0, the maximum of vorticity becomes detached from the surface. The curves for
b0 = 10 and 50 in figure 7 have approximately the same shape and maximum value,
which is located at a radial distance proportional to b0. This result indicates that, for
sufficiently high vaporization velocities, the structure of the velocity field in the mixing
region does not change if the problem is appropriately rescaled, as summarized in
Appendix B. It may be remarked that, since this large-b0 behaviour applies only when
the mixing layer is in the inner region, the value of ε must be small enough that
b0 � 1/ε, that is, given ε the results break down when b0 becomes too large. Figure 6,
for which b0 = 1/ε, violates this inequality for the purpose of illustrating most clearly
the characteristics of the streamlines.

5.2. Force balances and point force

Once the velocity field in the inner region is obtained, the drag of the droplet can be
determined from an integral over the droplet surface. The non-dimensional body force
g that appears in (3.2) is of order ε2, so its contribution to the pressure distribution
in the inner region can be neglected in the first approximation. Then, the total drag
divided by the ratio of the square of the viscosity coefficient to the density can be

written as F = 2π
∫ 1

−1
{(vv + pI − τ ′) · er} · ex dµ, with vv denoting the dyadic product,

I the identity matrix and er the unity vector in the outward radial direction, where
the integrand is evaluated at the droplet surface r = 1. This integral can be solved
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Figure 6. The streamlines (ψ = −b0 − εUλ, corresponding to the horizontal line at r = 0 for
x > 0, −5, 0, 5, 10, b0 + εUλ, the separatrix corresponding to the stagnating streamline, 25 and
50), shown as solid curves with the µ = 1 and stagnation streamlines bold, and the isotherms
(θ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7), shown as dashed curves, calculated from the large-b0

(strong-blowing) inner solution for a droplet evaporating steadily in a constant-velocity flow
for εU = 0.1 and b0 = 10, with σ = 5.
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Figure 7. The r-dependence of the vorticity factor Ω given by (4.17) for various values of b0

(solid curves: b0 = 0.5, 1, 2, 10 and 50; dashed curve: b0 = 0) for σ =1.

by introducing the expansions for the radial and azimuthal components of the non-

dimensional velocity field, b0/r2 + εU (λ/r2 + µf/r2) and −εU
√

1 − µ2(df/dr)/(2r),
and the expression of p given by (5.4) for the angular-dependent component in
the distribution of the non-dimensional pressure, giving F = −(2/3)πεU{f ′′′(1)+ (1 −
2b0)f

′′(1)+4(4+b0)f (1)}, with f given by (4.11) and the prime denoting differentiation
with respect to r. The non-dimensional drag corresponding to the quasi-steady inner
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Figure 8. Variations with b0 of normalized drag F/(6πεU ), calculated from (5.5), for various
values of σ (solid curves: σ = 0.1, 0.5, 1, 2 and 10; dashed curve: σ = 0).

velocity field then becomes, up to terms of order ε2,

F = 6πεU

{
(3 + χ)b3

0

9A1

− 2b0

3

}
+ O(ε2). (5.5)

Figure 8 shows variations of F/6πεU , calculated from (5.5), with b0 for various values
of σ . With this normalization, the well-known Stokes drag of a non-vaporizing sphere
in steady rectilinear flow corresponds to F/(6πεU ) = 1, and it is seen in figure 8 that,
indeed, F/(6πεU ) = 1 at b0 = 0 for all values of σ . In this limit, the contribution of the
viscous stresses to the drag is dominant and is twice the contribution of the pressure
forces, which act in the same direction, that is, the total force arises two-thirds from
the viscous stresses and one-third from the pressure.

The curves for σ � 2 in figure 8 have negative slope at b0 = 0 and reach a minimum
value that decreases with decreasing Prandtl number. However, the curve for σ = 10
has a positive slope at b0 = 0. Calculating the derivative of F with respect to b0 at
b0 = 0 from (5.5) gives a critical value of σ = 7/3, above which the drag increases with
b0 monotonically. At lower Prandtl numbers, then, moderate vaporization decreases
drag. In the large-b0 limit, the normalized drag on the droplet is 2b0χ∞/9 in the first
approximation and is mainly due to the momentum flux (4b0χ∞/9), which is twice the
contribution of the pressure forces, which provide thrust (negative drag, −2b0χ∞/9).
The viscous stresses have a vanishing net contribution to drag in this limit.

From the quasi-steady momentum conservation equation in the inner region, given
by (3.2) with body forces and local time derivatives neglected, it can be shown that F ex

is the total force transmitted to a spherical surface of radius r divided by the product
of the density and the square of the kinematic viscosity. The droplet therefore behaves
like a point force for large values of r , although this point-force effect is of order ε

in comparison with the mass-source effect of (5.3). The strength of the point force
increases with both b0 and σ for large b0, becoming proportional to the vaporization
velocity, a measure of the source strength. The initial drag reduction by vaporization
at small σ is notable, F/(6πεU ) approaching 1 + (3σ − 7)b0 as b0 approaches zero.
The minimum drag in fact approaches zero as σ approaches zero, and in the limit
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Figure 9. Variations with r of (a) the normalized angular-dependent contribution to the
temperature field 2Bh/[(1 + B) ln(1 + B)], calculated from (4.13), and (b) the normalized
angular-independent perturbation to the temperature field (g/g∞), calculated from (4.12), for
various values of B (solid curves: B = 0.1, 1, 10, 102 and 103; the dashed curves correspond to
h = 1/2 − 3/4r +3/8r2 − 1/8r3 and g/g∞ = 1 − 1/r , the solution for the non-vaporization limit
(B = 0).

σ = 0 the drag is a monotonically decreasing function of b0, approaching zero as b0

approaches infinity. In this limit, the flow near the droplet becomes isothermal and
insulated from the external flow. Substantial drag reduction through vaporization
therefore can occur at low Prandtl numbers (high thermal conductivities), especially
at high vaporization rates.

5.3. Temperature field and heat sink

From (4.6), it may be seen that the average perturbation of the inner temperature
field is described by the function g, and its angular dependence arises from the
function h. It can be shown from (4.13) that as r approaches infinity, h approaches
[(1+B) ln(1+B)]/(2B) for all values of σ . Variations of 2Bh/[(1+B) ln(1+B)] with
r for various values of B , calculated from (4.13), are plotted in figure 9(a). The ratio
(g/g∞) is similarly plotted in figure 9(b) as a function of r , with g evaluated from
(4.12). The dashed curves in figures 9(a) and 9(b) correspond to h = 1/2 − 3/4r +
3/8r2 −1/8r3 and g/g∞ = 1−1/r , respectively, which describe the perturbation of the
inner temperature in the non-vaporization limit B = 0, obtained in Appendix B. The
gradients of h and g at the surface decrease as B increases. In the strong-vaporization
limit, B � 1, variations of the temperature are exponentially small near the surface
and begin to be important only at radial distances from the surface of order ln(1+B).

The asymptotic behaviour of θ for large values of r becomes

θ ∼ θ∞ − q∞

r
, (5.6)

with

θ∞ = 1 + εUσ

{
g∞ − µ

(1 + B) ln(1 + B)

2B

}
(5.7)

measuring the apparent outer temperature, and

q∞ =
(1 + B) ln(1 + B)

B
+ εUσ

{
g∞[1 + ln(1 + B)] + µ

(1 + B) ln(1 + B)

B
B1

}
(5.8)
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Figure 10. Variations of the measure B1 of the angular dependence of the strength of the
heat sink with b0 evaluated from (5.9) for different values of the Prandtl number (σ = 0.5, 1
and 2).

the inward heat flux. Equations (5.7) and (5.8) are obtained from (4.1), (4.6) and
(4.8)–(4.16) by constructing expansions for large values of r . The constant B1 in (5.8)
can be written as

B1 =
ln(1 + B)

2
+

(χ + 3)b3
0

12A1

. (5.9)

Equations (5.7) and (5.8) exhibit an angular-independent increase of θ∞ and q∞
with the transfer number. These increases are proportional to the relative external
velocity, to the Prandtl number and to g∞. The Prandtl-number factor indicates that
the Péclet number εσ , rather than the Reynolds number ε, measures the stregth
of these effects. They enhance both the apparent external temperature and the heat
flux. Angular-dependent contributions also are present. The apparent temperature
is smaller in the downstream direction and larger in the upstream direction, by an
amount that increases with increasing B .

The angular variation of q∞ can be illustrated by plotting B1 as a function of B , as
shown in figure 10 for various values of σ . This figure exhibits a monotonic increase
of B1 with B , indicating an increase of the heat flux with increasing transfer number
in the upstream direction and a decrease in the downstream direction with increasing
transfer number. Although B1 decreases with increasing σ in figure 10, the effect of
the factor σ in (5.8) is stronger, so that the angular dependence also increases with
increasing Prandtl number at fixed Reynolds number. In the non-vaporization limit
B1 = 3/4, independent of the Prandtl number.

The non-dimensional total rate of heat transfer Q =2π
∫ 1

−1
q∞dµ can be calculated

from the solution for q∞ in (5.8) to be

Q = 4π{(1 + B) ln(1 + B)/B + εUσg∞[1 + ln(1 + B)]}. (5.10)

From (3.3), it can be shown that BQ is the total rate of heat transfer through any
spherical surface in the inner zone surronding the droplet divided by the product of
the heat of vaporization per unit mass, the viscosity coefficient and the radius of the
droplet. Applying this result to large values of r demonstrates that sufficiently far
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from its surface the droplet behaves like a point sink of heat, the strength of which
increases with increasing B , U , σ and g∞.

6. The outer solution
In terms of the appropriate rescaled outer variables R = εr , V = v/ε, the temperature

and streamfunction in the outer region, denoted by Θ = θ and Ψ = εψ , can be written
in terms of the expansions

Θ = 1 − εΘ ′, Ψ = 1
2
UR2(1 − µ2) + εΨ ′. (6.1)

It is convenient to introduce the outer time variable τ = ε2t , the characteristic diffusion
time to = cte, according to (2.2), being the appropriate time scale in this region. From
(3.3), the non-dimensional temperature perturbation Θ ′ then satisfies the energy
conservation equation

∂Θ ′

∂τ
+ U

∂Θ ′

∂X
− 1

σ
∇̃2Θ ′ = (Q/σ )δ3(R), (6.2)

with boundary condition Θ ′ → 0 at infinity. Here ∇̃ denotes the gradient operator
defined in (3.10) but based on outer variables, X = εx denotes the axial coordinate
in the outer variables, and δ3 stands for the delta function in three dimensions. The
right-hand side of (6.2) represents a point heat sink located at the centre of the
droplet with time-dependent stregth Q given by (5.10).

By changing to a stationary reference system with the origin located at the position
of the droplet at τ = 0, the solution to (6.2) can be written in terms of the Green’s
function of the unsteady diffusion equation (Pozrikidis 1997). The solution for Θ ′

based on coordinates moving with the droplet then becomes

Θ ′ =

√
σ

(4π)3/2

∫ τ

−∞

Q(τ0)

τ̂ 3/2
exp

{
−σR̂2

4τ̂

}
dτ0, (6.3)

where τ̂ = τ − τ0 is the difference between the actual time and the integration time,
R̂ = {[µR−Xd(τ )+Xd (τ0)]

2 +(1−µ2)R2}1/2 is the distance to the centre of the droplet
in stationary coordinates, and Xd(τ ) =

∫ τ

0
U (τ ′) dτ ′ is the axial position of the droplet

relative to its position at τ =0.
The asymptotic expansion of Θ ′ for small values of R must be obtained in order

to determine g∞ by matching with the inner temperature. In accomplishing that, it
is not permissible to take the limit R → 0 inside the integral of (6.3) because τ0 = 0
is within the limits of integration. Instead, it is necessary to expand asymptotically
the integral for small values of R and then take the limit. This can be demonstrated
formally by considering the quasi-steady outer temperature generated by a constant-
strength heat source Q0 in a uniform flow at constant velocity U0. In this case
R̂2 = R2 − 2µRU0τ̂ + U 2

0 τ̂ 2, so that the integral in (6.3) can be evaluated exactly to
give Θ ′ = [σQ0/(4π)] exp[−(1 − µ)σR/2], which is the quasi-steady outer solution.
Taking the limit R → 0 inside the integral of (6.3), however, gives [

√
σQ0/(4π)3/2] ×∫ ∞

0
τ̂−3/2 exp(−σ τ̂U 2

0 ) dτ̂ at leading order in R, the integral in which is divergent at
its lower limit.

To express results in the most general form, an asymptotic expansion of Θ ′ for
an arbitrary external velocity is helpful. Introducing the expansion for Q given by
(5.10) inside the integral in (6.3) leads to an asymptotic expansion of Θ ′ in terms of ε.
Expanding the corresponding leading-order term for small values of R, as is explained
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with more details in Appendix C, where use is made of the variable ξ =
√

σ/τ̂/2, gives

Θ ′ ∼ (1 + B) ln(1 + B)

B

{
1

R
− Γ + µ

σU

2

}
+ O(R), (6.4)

with

Γ =
2√
π

∫ ∞

0

(1 − exp(−σY 2ξ 2)) dξ (6.5)

and Y =
∫ τ

τ−σ/4ξ 2 U (τ ′) dτ ′. The integral in (6.5) must be evaluated numerically for gen-

eral expressions of the external velocity. The angular-dependent part of the expansion
in (6.4) may be seen by comparison with (5.6), (5.7) and (5.8) to match automatically
with the inner solution, which is quasi-steady. Only the angular-independent part
of the perturbation of the outer temperature depends on the vaporization history
through Γ , which is related to g∞ by matching with the inner solution. Comparing
(6.1) and (6.4) with (5.6) and (5.7) demonstrates that matching requires

g∞U =
b0(1 + B)

B
Γ, (6.6)

with b0 given by (4.2).
In order to obtain closure of the complete solution for the temperature and velocity

fields up to terms of order ε2, the first perturbation of the streamfunction Ψ ′ must
also be obtained. To acomplish that, it is convenient to consider the outer velocity
field, which can be written in terms of the expansion

V = U ex + εV ′. (6.7)

The perturbation V ′ satisfies the continuity and momentum-conservation equations

∇̃ · V ′ = Mδ3(R) (6.8)

and

∂V ′

∂τ
+ Ũ

∂V ′

∂X
+ ∇̃P ′ − ∇̃2V ′ = −(F/ε)exδ

3(R), (6.9)

with boundary conditions V ′ = P ′ =0 at infinity. Here, P ′ = p′/ε2 denotes the non-
dimensional ratio of pressure to density in the outer region. The right-hand sides
of (6.8) and (6.9) represent a point mass source and point force, respectively, both
located at the centre of the droplet, where the strengths M and F are given by (5.3)
and (5.5), respectively.

The solution for V ′ can be written uniquely by superposition of an irrotational
velocity field generated by the mass source and a rotational velocity field generated
by the component of the point force associated with the rotational part of the inner
velocity field in the absence of the mass source, giving

V ′ =
b0 + εg∞B/(1 + B)

R2
er + V ′

R. (6.10)

The first component of V ′ in (6.10) is purely radial, the associated streamfunction
being −µ[b0 + εg∞B/(1 + B)], which matches with the radial irrotational part of the
inner velocity field. Its interaction with the external velocity U ex has a contribution of
4πεUb0 to the strength of the point force F . Therefore, the rotational component of
the outer velocity field V ′

R , which is solenoidal, satisfies the momentum conservation
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equation

∂V ′
R

∂τ
+ Ũ

∂V ′
R

∂X
+ ∇̃P ′

R − ∇̃2V ′
R = 6πU

(3 + χ)b3
0

9A1

exδ
3(R), (6.11)

with boundary conditions V ′
R = P ′

R = 0 at infinity.
The solution to (6.11) was first obtained by Ockendon (1968) by means of a Fourier

transform. He derived an expression for the associated streamfunction, denoted here
by ΨR , written in terms of a double integral. A simplified expression for ΨR was
obtained later by Asmolov (2001) in terms of a single integral, in time, of a Green’s
function. This result can be written, in the notation used here, as

Ψ ′
R = − (3 + χ)b4

0

12A1

√
π

∫ τ

−∞
{[2U (τ0)τ̂ − µR − Y ] exp(−R̂2/4τ̂ ) + µR exp(−R2/4τ̂ )}

× [exp(−(1 − µ2)R2/4τ̂ ) − 1]
dτ0

τ̂ 3/2
, (6.12)

where τ̂ and R̂ have been defined previously in connection with (6.3). The rescaled
vorticity in the outer region, ω̃ = ω/ε3, can be expressed in terms of the outer

streamfunction as ω̃ = −
√

1 − µ2D̃2Ψ ′
R/R, with D̃2 being the operator defined in (3.9)

but in terms of outer variables. Introducing the expression for Ψ ′
R given by (6.12) into

this formula for ω̃ gives

ω̃ =
(3 + χ)b4

0

12A1

√
π

√
1 − µ2

R

∫ τ

−∞
G(R, τ, τ0) dτ0, (6.13)

with

G(R, τ, τ0) =
1

τ̂ 3/2

{[
2U (τ0)τ̂ − Y

2τ̂

(
R̂2

2τ̂
− 1

)
+

3µR − 2Y

2τ̂
− µRR̂2

4τ̂ 2

]
exp(−R̂2/4τ̂ )

× (exp(−(1 − µ2)R2/4τ̂ ) − 1) +

[
2U (τ0)τ̂ − Y

2τ̂

(
3R2

2τ̂
− 1

)
− µ2R2[µR + Y (1 + µ)]

4τ̂ 2

]
(1 − µ2) exp(−(R̂2 − (1 − µ2)R2)/4τ̂ )

−
[
3µR

2τ̂
− µR3

4τ̂ 2

]
exp(−R2/4τ̂ )(exp(−(1 − µ2)R2/4τ̂ ) − 1)

×
[
µR

2τ̂
+

µR3

2τ̂ 2

]
exp(−µ2R2/4τ̂ )

}
. (6.14)

The asymptotic expansion of ΨR for small R can be used to determine perturbations
of the velocity field of order ε2 in the inner region. Expanding the integral in (6.12)
for small values of R, which is explained with more details in Appendix C, gives

Ψ ′
R =

(3 + χ)b4
0

A1

(1 − µ2)

12

{
UR +

[
µ

U 2

4
− Π

]
R2

}
(6.15)

with

Π =
2√
π

∫ ∞

0

ξ ′−2[(U − 2Y/ξ ′2) exp(−Y 2ξ ′−2) − U (τ ) exp(µRU (τ )/2)] dξ ′. (6.16)

This result can be used to obtain an expansion of Ψ , given by (C18) in Appendix C,
which matches with the expansion of ψ for large values of r , given by (C5) in
Appendix C.



238 G. del Álamo and F. A. Williams

The expressions obtained for Γ and Π allow for general time variations of the
external velocity. Different vaporization histories will result by considering specific
problems.

7. Acceleration from rest and deceleration from constant velocity
Specific results for a translating droplet that begins to accelerate from rest or

decelerate from constant velocity ue at τ = 0 are derived in this section. The non-
dimensional external velocity can be written in general form as

U = U0 + γ c2τ (7.1)

for τ > 0 and U = U0 for τ < 0, where U0 denotes the non-dimensional initial velocity,
c denotes the ratio of the characteristic diffusion time in the outer region to the
characteristic time of variation of the external velocity, and the two-value parameter
γ is 1 for acceleration and −1 for deceleration. If the droplet is initially at rest, U0

is zero in this notation, and c = 1, as explained in deriving (2.3), which applies in
this case. If the droplet accelerates or decelerates from constant velocity, U0 is 1 and

c =
√

d2a/(4νε2ue), the initial constant velocity being the velocity scale.
An expression for g∞ can be obtained from (6.6) by splitting the integral in (6.5)

into two parts, ∫ √
σ/τ/2

0

+

∫ ∞

√
σ/τ/2

.

The first of these integrals would correspond to τ < 0 in (7.1), so that U = U0 and
Y = U0σ/(4ξ 2) according to the definition following (6.5), whereas (7.1) applies for
the second integral, and Y = σ [U0 + γ c2Y − σ/(8ξ 2)]/(4ξ 2). The first integral can be
expressed in terms of tabulated functions, but the second cannot. In the second, it is
useful to define y =

√
σ/τ/(4ξ ) =

√
τ̂ /τ/2, and it can then be shown from (6.5) that

(6.6) can be written as

g∞U =
(1 + B) ln(1 + B)

2B

{
U0[1 − erf(U0

√
στ/2)] +

2√
σπτ

[
1 + Λ − exp

(
−σU 2

0 τ/4
)]}

,

(7.2)

where

Λ =

∫ 1

0

y−2{1 − exp(−(σ/4)τy2[U0 + γ cτ (1 − y2/2)]2)} dy. (7.3)

For a droplet accelerating from rest c = 1 with ε given by (2.3), and by putting

z = y
√

στ 3/2, (7.2) and (7.3) can be simplied to give

g∞ =
(1 + B) ln(1 + B)

2πB

∫ φ(τ )

0

z−2{1 − exp(−z2[1 − z2/φ(τ )2]2)} dz, (7.4)

with φ(τ ) =
√

στ 3/2. Numerical integration of this integral produces the solid curves
shown in figure 11. According to (5.7), the increase in the apparent external
temperature caused by the acceleration is proportional to εUσg∞, which, since U = τ

here according to (7.1), is seen from (2.3) and (7.4) to be (d/2)a1/3(ν/σ )−2/3[(1 +
B)/B][ln(1+B)] multiplied by a function of σ 1/3τ , the non-dimensional time variable τ

being the physical time multiplied by (a2/ν)1/3. These results indicate that the relevant
parameter for non-dimensionalizing the time is (a2σ/ν)1/3, that is, the thermal diffu-
sivity, rather than the kinematic viscosity, determines the time scale of temperature
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Figure 11. Variations of the non-dimensional apparent droplet temperature perturbation
2Bg∞U/[b0(1 + B)] with the non-dimensional time, the ratio of the time to the characteristic
time (a2/ν)−1/3, evaluated from (7.4) for three different values of the Prandtl number (σ = 0.1, 1
and 10). U = τ.

evolution under the imposed acceleration. In addition, the Péclet number
(d/2)a1/3(σ/ν)2/3, rather than the Reynolds number, is the appropriate small para-
meter, and with these revisions, the dependence on the Prandtl number disappears.
The dependence on the transfer number is exactly the same as it is for the quasi-
steady problem with a constant imposed external velocity, discussed following (5.7).
Until τ becomes of order unity, the droplet is evaporating under the influence of
the initial temperature field generated by the evaporating droplet at rest, so that
the increase of g∞U with time is small, especially at earlier times. The effect of the
initial temperature field becomes more important with decreasing Prandtl numbers
at fixed kinematic viscosity, since the heat transfer to the inner region increases
with the thermal conductivity. For τ � 1, the integral in (7.4) approaches

√
π, so

that the expression for g∞U approaches that corresponding to a quasi-steady outer
solution, g∞U = [(1 + B) ln(1 + B)/2B]τ , which is represented by the dashed line in
figure 11(b).

The case of droplet deceleration from a constant velocity is represented in figure 12,
which shows variations of 2Bg∞U/[(1 + B) ln(1 + B)] with time for three different
values of σ with c = 1. The values of g∞U are calculated from (7.2) and (7.3) with
U0 = 1 and γ = −1. At τ = 0, the droplet is evaporating steadily at constant velocity, so
the classical result g∞U = σb0(1+B)/2B is obtained. As the external flow decelerates,
perturbations of the external temperature tend to move away from the droplet surface
so that the rate of heat transfer to the inner region and, therefore, the vaporization
rate, decrease. At τ = 1, the droplet is at rest; however, there still is a positive value of
g∞U , which decreases as σ increases for constant kinematic viscosity, indicating that,
even in the absence of a convective velocity, there exists a remaining perturbation
of the temperature field that increases the vaporization rate in this time-varying
situation.

The non-dimensional temperature perturbation in the outer region can be evaluated
numerically from (6.3) for these two problems. The results of the numerical integration
are shown in figure 13. The temperature decrease with decreasing radius at different
times and the approach to the limiting value obtained from (6.6) are readily apparent
in this figure, in which the dominant term, proportional to 1/R which is seen in (6.4),
has been substracted for greater clarity.
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Figure 12. Variations of the non-dimensional apparent droplet temperature perturbation
2Bg∞U/[b0(1+B)] with non-dimensional time evaluated from (7.2) and (7.3) for three different
values of the Prandtl number (σ =0.1, 1 and 10) and c = 1, U0 = 1 and γ = −1. U = 1 − τ.
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Figure 13. Variations of the non-dimensional apparent droplet temperature perturbation
Θ ′B/(σb0(1+B)) − 1/R with the non-dimensional radius R, obtained by numerical evaluation
of (6.3) and values of g∞UB/[b0(1+B)], calculated from (6.6), for (a) droplet acceleration from
rest (U0 = 0, γ = 1), and for (b) droplet deceleration from constant velocity (U0 = 1, γ = −1).
(a) U = τ , σ = 1, µ= 0. (b) U =1 − τ , σ = 1, µ= 0.

8. Oscillatory motion
For a droplet evaporating in oscillatory motion, the non-dimensional external

velocity can be written in general form as

U = Um + W cos(cτ ), (8.1)

with Um denoting the mean velocity, W the constant amplitude and c the non-
dimensional frequency normalized with the inverse of the characteristic diffusion time
in the outer region t−1

o . Typically, the mean velocity is used as the velocity scale, so
that Um =1 in this notation. For pure oscillatory motion with zero mean velocity
(Um = 0), the amplitude of the velocity fluctuations becomes the appropriate velocity
scale; therefore W = 1. Introducing the definition of U in (8.1) into (6.5) gives an
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Figure 14. Variations of the non-dimensional apparent droplet temperature perturbation
Bg∞U/[b0(1 + B)] with the non-dimensional time τ for oscillatory external velocity calculated
from (8.2) over one period of oscillation, for σ =1 and different values of the non-dimensional
frequency c for (a) oscillatory motion with mean velocity and W = 1 for c = 10−3, 10−2,
10−1, 1, 10, 102 and 103 (u =1 + cos(cτ )), and for (b) pure oscillatory motion with zero mean
velocity and c = 10−3, 10−2, 10−1 and 1 (U = cos(cτ )).

expression for g∞U that can be written as

g∞U =
(1 + B) ln(1 + B)

B

× 2√
π

∫ ∞

0

[
1 − exp

{
−

(
Umy

4
+

σW

cy
[sin(cτ ) − sin(ct − cy2/4)]

)2}]
dy

y2
, (8.2)

where the integral must be evaluated numerically. Variations of Bg∞U/[σ (1 + B)]
for oscillatory external velocity calculated from (8.2) are plotted as functions of a
normalized time in figure 14 over one period of oscillation, for σ = 1 and different
values of c. Figure 14(a) represents the case of oscillatory motion with non-zero mean
velocity for the case W = 1, and figure 14(b) represents the case of pure oscillatory
motion with zero mean velocity. In the limit c = 0, it can be shown from (8.2) that
g∞U = [(1 + B) ln(1 + B)/(2B)]|U0 + W cos(cτ )|, which is the result corresponding to
a quasi-steady outer solution, plotted as dashed curves in figure 14 for the two cases
represented there. For any other frequency of the external velocity represented in
figure 14, g∞U is periodic with frequency c, the amplitude decreasing and the phase
shifting so that the maximum of the apparent temperature occurs at later times as the
frequency increases. The results in figure 14(a) are different from the results obtained
by Pozrikidis (1997) for pure uniform oscillatory motion, in which there is no phase
shift as the frequency increases. Except for this difference, the discussion by Pozrikidis
(1997) applies.

9. Conclusions
The first-order asymptotic analysis presented here shows that the solution near the

surface of a droplet evaporating in a slowly varying flow at low Reynolds number
is quasi-steady except during short periods of time, of the order of the characteristic
diffusion time based on the droplet diameter, when the droplet acceleration changes
abruptly. The unsteadiness caused by the time variation of the relative velocity between
the droplet and the external flow affects only the perturbation of the temperature and
velocity field in the Oseen region, written in terms of time-history integrals, and the
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vaporization rate through the angular-independent apparent external temperature,
which increases with increasing external velocities.

Explicit closed-form expressions for the quasi-steady perturbations of the
temperature and the velocity field in the inner region have been written in terms
of the transfer number, the Prandtl number and the non-dimensional time, in simpler
forms than those that can be found in the literature, revealing various properties of the
solution in this region not seen before. With the non-dimensionalization adopted, the
unperturbed non-dimensional vaporization rate b0 decreases with increasing Prandtl
number as a consequence of the dimensional vaporization rate being independent
of viscosity. Lower thermal conductivities and larger transfer numbers increase the
perturbation of the vaporization rate, by increasing the apparent external temperature,
and enhance its angular dependence, the vaporization rate becoming larger in the
upstream direction and smaller in the downstream direction. For Prandtl numbers
below the critical value σ = 7/3, the drag decreases with b0 for low and moderate
vaporization rates, reaching a minimum that decreases with decreasing Prandtl
number. In the limit σ = 0, the drag is a monotonically decreasing function of b0

and vanishes as b0 tends to infinity. For large vaporization velocities, the vorticity
region is blown away from the droplet surface, the solution in the vicinity of the
droplet becoming isothermal and irrotational. In this large-b0 limit, a transition
mixing region develops at radial distance of order b−1

0 as a result of the interaction
of the source flow with the externally imposed uniform flow, creating a negative
pressure gradient in the tangential direction on the droplet side that reverses the flow.
The velocity and pressure fields near the droplet surface in the strong-vaporization
limit depend only on the Prandtl number through the angular-dependent part of the
vaporization rate, as does the drag, which decreases with the Prandtl number and is
mainly due to momentum, pressure forces having a negative contribution to the drag.

Sufficiently far from its surface, the droplet behaves like a point source of mass
and heat, their strength increasing with the external velocity, the transfer number
and the thermal conductivity, and like a point force pointing upstream in the axial
direction and with strength equal to the drag. These results allow the solutions in
the Oseen region to be written as single time-history integrals of Green’s functions.
Particular results for a translating droplet that accelerates slowly from rest reveal that,
until times of the order of the characteristic diffusion time in the Oseen region, the
droplet evaporates under the influence of the initial temperature field generated by
the droplet evaporating at rest and the apparent external temperature is smaller than
that corresponding to a quasi-steady solution, higher thermal conductivities increasing
this effect. If the droplet decelerates from constant velocity, the heat transfer and,
consequently, the vaporization rate decrease more slowly than those corresponding to
a quasi-steady solution. Perturbations of the temperature in the Oseen region remain
even in the absence of forced convection, higher thermal conductivities increasing the
apparent external temperature. For a droplet moving in oscillatory motion, it is seen
that the time variation of the apparent external temperature is periodic with the same
frequency as that of the external velocity, but the amplitude decreases and the phase
lags as the frequency increases.

These results provide a first step towards addressing theoretically the vaporization
and combustion of fuel droplets in slowly varying flow at low Reynolds numbers. In
droplet combustion, the effect of heat release associated with the chemical reactions
creates typically large variations of temperature within the flow field, so that the
dependence of the density and the transport properties on the temperature must
be included in the analysis. Different limits appear in this problem depending on
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the location of the flame relative to the droplet surface, which is determined by a
parameter S, the stoichiometric mass of oxidizer consumed per unit mass of fuel. For
large S, the flame is in the Oseen region, whereas for S of order unity or smaller, it is
in the Stokes region. Hermanns (2006) addresses the limiting case of large S, typical in
the combustion of liquid hydrocarbon fuels in air, and Péclet numbers of order S−1. In
this work, the solutions are written in terms of matched asymptotic expansions, using
the Péclet number as the small parameter. Since the thermal expansion occurring in
the outer region produces large variations of density, the analysis of the Oseen region
must be carried out numerically, but the matching can be done analytically to provide
the boundary conditions required for the numerical integrations. For values of S of
order unity, the outer region is simpler, but there are correspodingly large variations
of density in the vicinity of the droplet surface that requires significant computational
work. Numerical analysis of distinguished regions with analytical matching thus seem
to constitute a fruitful future path for analysis of droplet combustion.

We are greatly indebted to Amable Liñàn and Miguel Hermanns for helpful discus-
sions in the course of this work. Related discussions with Vedha Nayagam,
Constantine Pozrikidis, and Stefan Llewellyn Smith are also greatly appreciated. This
research was supported by the NASA Microgravity Combustion Science program.

Appendix A. The constants of integration of the quasi-steady inner solution
The constant of integration K1, K2, K3 and K4 in (4.8) and (4.16) can be written as

K1 =
2

(σb0)2
(σb0 − 1 + e−b0σ ), (A 1)

K2 =
2

(σb0)3
[σb0 − 2 + (σb0 + 2) e−σb0 ], (A 2)

K3 =
2

(σb0)3
[

1
2
(σb0)

2 − 2σb0 + 3 − (σb0 + 3) e−σb0
]

(A 3)

and

K4 =
1

30σ 3b2
0

{
[σ 5 ln(σ −1 + 1) + (10σ 2 + 15σ + 6) ln(1 + σ ) − σ 4 + σ 3/2 − 12σ 2 − 6σ ]b4

0

− 10σ 2b3
0 + 10σb2

0 + 4σ 2b0 − 6σ +
[
−σ 2b5

0 + (σ 2 + 4σ )b4
0 + (8σ 2 + 11σ )b3

0

− (4σ 2 + 7σ )b2
0 − (4σ 2 − 6σ )b0 + 6σ

]
e−b0 +

[
σ 4b3

0 − (σ 3 + 10σ )b2
0 + 2σ 2b0 + 6σ

]
× e−σb0 +

[
2σb4

0 − (σ 4 − σ 3 + σ 2 + 11σ )b3
0 + (σ 3 − 2σ 2 + 7σ )b2

0 − 2(σ 2 + 3σ )b0

− 6σ
]
e−(1+σ )b0 +

[
σ 2b2

0 −4σb0 −10σ 2 −15σ −2(σb0 +3)e−σb0 −b0K3/30
]
b4

0E1(b0)

− σ 5b4
0E1(σb0) + (σ 5 + 10σ 2 + 15σ + 6)b4

0E1[(1 + σ )b0]
}
, (A 4)

with

E1(x) =

∫ ∞

x

e−t

t
dt, (A 5)

which is related to the exponential integral (Abramovitz & Stegun 1965). The first
three of these, which are plotted in figure 15, depend only on the product σb0,
that is, they are determined uniquely by the single parameter B . The fourth, which
depends on both B and σ , is plotted in figure 16 for different values of σ . As B

approaches infinity, the values of K1, K2 and K3 all approach zero, while K4 diverges
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Figure 15. Variations of the integration constants K1, K2 and K3, given by (A1), (A2) and
(A3), with the product σb0 related to the transfer number.
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Figure 16. Variations of the integration constant K4, given by (A4), with the unperturbed
non-dimensional vaporization rate b0 for various values of the Prandtl number (σ = 0.5, 1
and 2).

(in proportion to B2). At B =0, K3 and K4 vanish, but K1 and K2 are positive.
Typically, K1 is the largest and most important of these four functions, while K2 is
the second most important, although all four have significant effects on the solution.

Appendix B. The limits of weak and strong vaporization
The limiting case of weak vaporization of the droplet, b0 � 1, is a regular

perturbation problem at the leading orders. The solutions in the inner region can be
written as series of powers of b0 by expanding the expressions for λ, χ , f , g and h in
(4.7), (4.8) and (4.11)–(4.13) for small b0. The constants A1 and A2 in (4.9) and (4.10)
and the constants K1, K2, K3 and K4 in (A1)–(A4) can be expanded for small b0, giving
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A1 = b3
0/3−b4

0/8+O(b5
0), A2 = b3

0/6−b4
0/8+O(b5

0), K1 = 1−σb0/3+σ 2b2
0/12+O(b3

0),
K2 = 1/3 − σb0/6 + O(b2

0), K3 = σb0/12 − σ 2b2
0/30 + O(b3

0) and K4 = σb4
0/36 − (2σ 2 +

3σ )b5
0/216 + O(b5

0 ln b0). Introducing these results into (4.8) and expanding for small
b0 gives

χ =
3σb0

8
+ O

(
b2

0

)
. (B 1)

The integral in (4.11) can be expanded for small b0 and values of r of order unity
giving (r5 −1)/(5b5

0)−(r3 −1)/(6b3
0)+(r2 −1)/(6b2

0)−(r −1)/(8b0)+O(ln r). Employing
this result and the expansions of χ and A1 in (4.11) gives, at leading order in b0,

f = r2 +
1

2r
− 3r

2
+

3

16

[
6 − (3 + σ )

(
1

r
+ r

)]
b0 + O(b2

0). (B 2)

The corresponding expansion for g in Eq. (4.12) is

g = g∞(1 − 1/r)(1 − σb0/r) + O(b2
0), (B 3)

and from (4.13) and (B2),

h =
1

2
− 3

4r
+

3

8r2
− 1

8r3
+ O(b0). (B 4)

Through (4.6) and other equations, these results determine the velocity and tempera-
ture fields for non-vaporizing and weakly vaporizing droplets. In particular, the first
term in (B2) gives the well-known Stokes streamfunction for flow around a solid
sphere, and the second term is the correction for weak vaporization.

The limiting case of strong vaporization, b0 � 1, is somewhat more involved. Near
the droplet surface, the solutions for g and h are exponentially small, implying
temperatures determined by the unperturbed spherically symmetrical temperature
field, and f can be expanded in powers of b−1

0 to obtain

f = −χ∞

3

(
r2 +

2

r

)
+ O

(
b−1

0

)
, (B 5)

with χ∞ given by (5.2). Then, at leading order in b−1
0 , the solution near the surface

becomes isothermal and irrotational, the flow being purely radial in the first approxi-
mation.

At radial distance of order b0, for large b0, the solution can be written in the
appropriate rescaled variables r̄ = r/b0, f̄ = f/b2

0, ḡ = g/b0 and h̄ = h/b0. Then, at
leading order in b−1

0 , the inner solution in this region can be written as

f̄ = 2 (3 + χ∞)

[
r̄4

5
− 1

r̄

∫ r̄

0

(ξ 3 + ξ 4) e−1/ξ dξ

]
− χ∞

r̄2

3
, (B 6)

ḡ = ḡ∞e−σ/r̄ , (B 7)

with ḡ∞ = g∞/b0, and

h̄ =

[∫ r̄

0

(
2ξ

σ
− 1

)
f̄ dξ

ξ 2

](
2r̄

σ
+ 1

)
e−σ/r̄ −

[∫ r̄

0

(
2ξ

σ
+ 1

)
f̄ e−σ/ξ dξ

ξ 2

](
2r̄

σ
− 1

)
.

(B 8)

The vorticity function written in (4.17) can be seen to depend directly only on r̄ , apart
from a scaling prefactor, just σ -dependent, determining its strength. These solutions
describe the flow and temperature fields associated with the interaction of a point
source with a uniform flow at a temperature different from that of the source.
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Appendix C. Calculations required for obtaining the composite solutions for
the streamfunction and temperature

In order to match the inner and outer solution, the asymptotic expansions of θ

and ψ for large r and of Θ and Ψ for small R must be obtained. To derive the θ

expansion for large r , the expressions for θ0, g and h from (4.2), (4.12) and (4.13) can
be expanded in the large-r limit to give, up to terms of order 1/r2

θ0 = 1 − (1 + B) ln(1 + B)

B

1

r
, (C 1)

g = g∞{1 − [1 + ln(1 + B)](1/r)}, (C 2)

h =
(1 + B) ln(1 + B)

B

{
1

2
+

B1

r

}
, (C 3)

with B1 given by (5.9). Combinig these results according to (4.1) and (4.6), the
asymptotic expansion of θ for large r can be expressed as

θ ∼ θ∞ − q∞

r
, (C 4)

with θ∞ and q∞ given by (5.7) and (5.8) in the main text. To obtain the ψ expansion
for large r , the asymptotic expansion of the integral in (4.11) for large r can be written
as (r5 − 1)/(5b5

0) − (r3 − 1)/(6b3
0) + (r2 − 1)/(6b2

0) − (r − 1)/(8b0) + O(ln r), leading to
an expansion of f which can be used with (4.1), (4.2) and (4.5) to show that

ψ = −µb0 + εU

{
−µg∞B

1 + B
+

1 − µ2

2

[
r2 +

b3
0(3 + χ)

6A1

(
r +

3b0

4

)
+

(
(3 + χ)b4

0

8A1

− (1 + χ)

)
1

r

]}
. (C 5)

By introducing the expansion for Q given by (5.10) inside the integral in (6.3) and
changing to a more convenient variable ζ = R/

√
4τ̂ /σ , at leading order in ε the

expression

Θ ′ =
σb0(1 + B)

BR

√
4

π

∫ ∞

0

exp[−ζ 2(1 − 2µYR−1 + Y 2R−2)] dζ (C 6)

is obtained, with Y =Xd(τ ) − Xd(τ − σR2/4ζ 2). An asymptotic expansion of the
integral in (C6) for small values of R can be obtained by breaking the integral into two

parts,
∫ λ

0
+

∫ ∞
λ

, with R � λ� 1. Since U = dXd/dτ , use of a Taylor expansion in the

expression for Y shows that the approximation Y = σUR2/(4ζ 2) is valid in the interval
λ<ζ < ∞, reducing the argument of the exponential in (C6) to −ζ 2 + µσUR/2 −
σ 2U 2R2/(16ζ 2), so that the second of these integrals becomes proportional to erfc(λ)
and, in the limit of small λ, approaches (

√
π/2)(1 + µσUR/2) when expanded to first

order for small R. In the first integral, an appropriate variable is ξ = ζ/R, in terms of

which this integral becomes, up to terms of order R2, R
∫ λ/R

0
exp[−Yξ 2(Y − 2µR)] dξ ,

in which Y =
∫ τ

τ−σ/4ξ 2 U (τ ′) dτ ′ in the present variables. Since Y is seen from this
expression to become proportional to ξ−2 for large ξ , the leading-order term in the
argument of the exponential for small R vanishes for large ξ , causing the exponential
to approach unity and the integral to diverge as λ/R approaches infinity. It is therefore

appropriate to add and subtract R
∫ λ/R

0
dξ = λ, obtaining, up to terms of order R2,

λ−R
∫ λ/R

0
(1− exp(−Y 2ξ 2)) dξ , which, in the limit of vanishing λ and R/λ, approaches√

πRΓ/2, with Γ defined by (6.5), a convergent integral. Combining these results
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produces an asymptotic expansion of Θ ′ for small values of R, given by (6.4), which
can be introduced into (6.1) to give, up to terms of order ε2, the expansion

Θ = 1 − ε
σb0(1 + B)

B

{
1

R
− Γ + µ

σU

2

}
+ O(R). (C 7)

The procedure used to obtain the expansion in (C7) can be followed to expand the
integral in (6.12), as well, which can be written in terms of ζ ′ = R/

√
4τ̂ and Y to give

Ψ ′
R = − (3 + χ)b4

0

3A1

√
π

∫ ∞

0

H (τ, ζ ′) dζ ′, (C 8)

with

H (τ, ζ ′) = [(UR/2ζ ′2−µ−Y/R) exp(−ζ ′2(1 − 2µYR−1 + Y 2R−2))+µ exp(−ζ ′2]

× [exp(−(1 − µ2)ζ ′2) − 1]. (C 9)

An asymptotic expansion of Ψ ′
R for small values of R can be obtained by breaking

the integral in (C9) into two parts,
∫ λ

0
+

∫ ∞
λ

. Introducing the approximation Y = UR2/

(4ζ ′2) in the second of these integrals gives −[I1(a, λ) − I1(µa, µλ)] + [µI2(a, λ) −
I2(µa, µλ), with a =UR/4,

I1(a, λ) =

√
π

4

{
e2(1+µ)a[1 + erf(λ + a/λ)] − e−2(1−µ)a[1 + erf(λ − a/λ)]

}
, (C 10)

and

I2(a, λ) =

√
π

4

{
e−2(1−µ)a[1 − erf(λ − a/λ)] + e2(1+µ)a[1 − erf(λ + a/λ)] − 2[1 + erf(λ)]

}
.

(C 11)

The expressions for I1(µa, µλ) − I1(a, λ) and µI2(a, λ) − I2(µa, µλ) can be expanded
for small a, λ and a/λ. Neglecting higher-order terms gives

I1(µa, µλ) − I1(a, λ) =
√

πa(µ − 1) − λa e2µa(1 − µ2)

+
√

π2a2µ(µ − 1) − a3

λ
e2µa(1 − µ2) (C 12)

and

µI2(a, λ) − I2(µa, µλ) =

√
π

2
(µ − 1)(e2µa − 1) +

√
πa2µ(1 − µ)

+ 2
3
aλ3µ2(1 − µ2) − a4

2λ
µ(1 − µ2). (C 13)

The first integral becomes R3(1 − µ2)[J1 + µRJ2], with

J1 =

∫ ∞

R/λ

ξ ′−4[2U (τ − ξ ′2/4)ξ ′2/4 − Y ] exp{−Yξ ′−2[Y − 2µR]} dξ ′, (C 14)

J2 =

∫ ∞

R/λ

ξ ′−4[1 − exp{−Yξ ′−2[Y − 2µR]} dξ ′, (C 15)
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where ξ ′ = R/ζ ′. The integrals J1 and J2 are divergent in the limit of vanishing R/λ.
If (a/R) eµ2a

∫ ∞
R/λ

ξ ′−2 dξ ′ is added to and subtracted from J1, it is found that

J1 =

∫ ∞

R/λ

{ξ ′−4[2U (τ − ξ ′2/4)ξ ′2/4 − Y ] exp(−Yξ ′−2[Y − 2µR])

− (a/R) exp(µ2a)ξ ′−2} dξ ′ + aλ exp(2µa)/R2. (C 16)

The last integral is convergent in the limit R/λ→ 0, so it can be split as
∫ ∞

0
−

∫ R/λ

0
.

Using the approximation Y = Uξ ′2/4 in the second of the last integrals gives
a3R−2 exp(2µa)/λ+O(R2). Adding and subtracting

∫ ∞
R/λ

{[1−exp(2µa)]ξ ′−4+a2ξ ′−2] dξ ′

from J2 gives

J2 =

∫ ∞

R/λ

{ξ ′−4[exp(2µa) − exp{−Yξ ′−2[Y − 2µR]}] − a2ξ ′−2/R2} dξ ′

+ (1 − exp(2µa))λ3/3R3 + a2λ/R3. (C 17)

The last integral is convergent, so it can be split as
∫ ∞

0
−

∫ R/λ

0
. The second of these

integrals can be expanded to give −a4/(2R3λ). Combining these results gives an
asymptotic expansion of Ψ ′

R for small values of R, given by (6.15), which can be
introduced into (6.1) to give, up to terms of order ε2, the expansion

Ψ =
1

2
UR2(1−µ2)+ε

{
−µb0 +

(χ + 3)b4
0

A1

(1 − µ2)

12

[
UR + µ

U 2

4
− Π

]
R2

}
, (C 18)

where

Π =
2√
π

∫ ∞

0

ξ ′−2[(U − 2Y/ξ ′2) exp(−Y 2ξ ′−2) − U (τ ) exp(µRU (τ )/2)] dξ ′ (C 19)

and the term −µb0 inside the square brackets in (C18) corresponds to the leading-
order term in ε of the streamfunction associated with the first component of V ′

in (6.10).
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